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Staggered ice-rule vertex model on the KagomC lattice 

K Y Lint 
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China 

Received 11 June 1975 

Abstract. The most general Pfaffian solution of the staggered ice-rule vertex model on the 
Kagome lattice is given in this paper. I t  is shown that this model may exhibit up to three 
phase transitions. The specific heat diverges with an exponent $ either above or below 
each transition temperature. The exact isotherm for an antiferroelectric model in both 
staggered and direct fields at a particular temperature is obtained. As the fields vary, the 
system undergoes transitions among states of zero, partial and complete direct polarization. 

1. Introduction 

An important progress in the mathematical theory of phase transition is the solution of 
the ice-rule vertex models and its subsequent development, which have been reviewed 
by Lieb and Wu (1972). In the past, attention was focused mainly on models with 
translationally invariant vertex weights. Recently Wu and Lin (1975) considered the 
staggered ice-rule vertex model on the square lattice which allows different vertex 
weights for the two sublattices of the square lattice. They pointed out that the staggered 
ice-rule model is reducible to the Ising model in a non-zero magnetic field and some 
dimer models of phase transitions (AlIen 1974, Salinas and Nagle 1974). In the absence 
of a general solution, they studied in detail the most general Pfaffian solution. Their 
results can be summarized as follows. The system may exhibit up to two phase transi- 
tions. If there is only one transition temperature '&, then below T,  the system is in an 
ordered or frozen state while above T, the specific heat diverges with an exponent a = f. 
If there are two transition temperatures T,' and T:( > T,'), then the system is in a frozen 
state below T,' and in an ordered state above T,' while the specific heat diverges with 
a = 3 above T i  and IX' = f below T:. They also obtained the exact isotherm of a 
general antiferroelectric model at a particular temperature in the presence of both 
direct and staggered fields. As the fields varied, the system underwent transitions 
among states of zero, partial and complete direct polarization. The purpose of this 
paper is to study the most general Pfaffian solution of the staggered ice-rule vertex 
model on the Kagome lattice. 

2. Definition of the model 

Place arrows on the lattice edge of a Kagome lattice L of N sites subject to the ice-rule 
that there are always two arrows in and two arrows out at each site. In figure 1, the three 
sublattices of L are denoted by A, B, and C. The six configurations allowed at each 

t Supported in part by the National Science Council, Republic of China. 
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Figure 1. The Kagome lattice with three sublattices A, B and C. 

vertex are shown in figure 2, where each vertex type is assigned a weight. Let the vertex 
weights be 

{w) = { q , w  2,...,06) on A 

on B 

on C. 
{U’} = {U;, o;, . . . ,ob) (1) 

{U”}  == { U ; , U ; ,  . . . ,  U:} 
The partition function is 

2 3 c (no,”l)(nwl”;)(nwy,) (2) 

where the summation is extended to all allowed arrow configurations on L, and ni(ni, n:) 
is the number of the ith-type sites on A(B, C). The goal is to compute the ‘free energy’ 

1 
t+b = lim -In Z. 

N-tm N (3) 

In a physical model, the vertex weights can be interpreted as the Boltzmann factors 

(4) o, = exp( - Be,) w: = exp( - pei) oy = exp( - Bel‘) 

where B = l/kT and e , ,  e ; ,  e:‘ are the vertex energies, 

4 
x x x x x x  

c U;’ 4 0; 4 0; 

Figure 2. The six ice-rule configurations and the associated vertex weights. 
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3. Pfaffian solution 

A vertex model is soluble by the Pfaffian method (Montroll 1964) if a certain ‘free- 
fermion’ condition is satisfied at each vertex (Fan and Wu 1970). For the staggered ice- 
rule model on the Kagome lattice, the condition reads 

Under this condition the partition function is equal to a Pfaffian which can be evaluated 
exactly. With the details outlined in appendix 1, the result is given here : 

with 

Notice that although there are 15 independent vertex weights to start with, the final 
expression contains only seven independent parameters. The free-fermion condition ( 5 )  
implies two inequalities (see appendix 2) 

a 2 2(bb’)’I2 + ~(cc’)’’’ + 2(dd’)’’2 

a 2 3(bcd’+ b‘c’d)’I3. 

The special case of d = d‘ = 0 has been discussed by Wu and Lin (1975). 

results are proved. 

inequality (9). We have 

The analytic properties of II/ will be discussed in appendix 2, where the following 

Consider a, b, b‘, c, c’, d, d‘ as independent and positive parameters which satisfy the 

$ = In max{b, b’} if b+b’  2 a+c+c’+d+d’  

= & In max{c, c ‘ }  if c+c’  2 a+b+b’+d+d’  

= In max(d, d’} if d+d’ 2 a+b+b’+c+c’  

=-  Jo2n de In d 4  ln[a - 2(bb’)’’2cos 8 - ~ ( C C ‘ ) ’ ’ ~  COS (b 
8n2 

- 2(dd‘)’’2 cos(B+ Cp)] 
if a 2 b + b’ + c + c’ + d + d’ and bcd’ = b’c’d. 
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If a, b +  b‘, c+c’, d+d’ form a polygon and bcd’ = b’c’d, then F(Bo, $o) = 0 has 
exactly one solution such that 0 < Oo(q50) < 71 and we have 

$ = 91n max{b, d }  +- 

= 4 In max{b’, d’} +- 
where zl, z2(1z1( 2 1z21) are the roots of 

lnlzl(4)i dq5 

lnJzz(4)- ‘1 d 4  

if b’+d‘ < b+d 

(12) 
;R 10’” 

if b’+d’ > b+d 
1 40 

2 X  J o  

(b - d eid)z2 + (a + c ei+ + c’ e-’+)z + b’ - d‘ e-’+ = 0. 

In the special case b = d = 0, equation (12) reduces to 

a + c e’+ + c’ e-‘* 
I) = f In max(b’, d’} +& I,”” dq5 In1 b‘-de--’4 

where 

4cc’ cos’ q50 + 2[b‘d‘ + a(c + c’)] cos q50 + u2 + (c - c ’ ) ~  - b‘’ - d” = 0. 

When the polygon degenerates into a straight line, namely 

A = a + b + b ’ + c + c ’ + d + d ’ - 2 m a x { a , b + b ’ , c + c ’ , d + d ’ )  = 0 (14) 
we have 

eo = o 40 = 0 i fa  = b+b‘+c+c‘+d+d‘ 

eo = 0 4 0  = Ti  ifb+b‘ = a+c+c’+d+d’  

eo = 40 = 0 if c+c’ = a+b+b’+d+d’  

eo = 71 40 = 71 ifd+d‘ = a+b+b’+c+c’. 

If bcd‘ = b‘c’d, then I) is non-analytic if and only if the parameters satisfy the critical 
condition (14). Besides, we have 

$singular A’ In( - A) A + 0- if b = b‘, c = c’, d = d’ 
(16) - A3I2 6 - 0 ’  otherwise. 

The physical interpretations of these results are given in the following two sections. 

4. Exactly soluble models 

In physical models, the vertex weights are the Boltzman factors 

mi = exp( -fiei) 0; = exp( - fie;) w; = exp( - fie;). 
In this section we consider those models for which the free-fermion condition ( 5 )  is to 
hold for all temperatures so that the model is exactly solved. Notice that $ is invariant 
under the following three transformations : 

TI : 

T2 : 

T 3 :  0 1 ( 0 2 , W 3 , 0 4 , 0 S , 0 6 i O ; ) e , W ; ) ( W I ; , 0 ; , 0 ) ; , 0 6 , 0 ; , 0 k ) .  (17) 

0 1 ( 0 ;  9 0;‘ 9 0 3  U; ,  01;) c-) o~(w;,  0; ,04, U:, 0;) 

w1(023 0 3 ,  w4, 0 5  I 06901;) c-* 0;(0;, a:, 0; 9 ok,W;) 
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There are four distinct classes of exactly soluble models (others are related to them by 
T, and T3):  

A :  w102 = W;O; = o;o'; = 0 03w4 = 05w6 o;o: = o;w; 

B :  0 1 0 2  = O;W; = W"O" 3 4 = 0  0304 = 0506 o;o; = o;o; 

c :  03w4 = w;o; = 0;o; = 0 U 1 0 2  = 0 5 0 6  0;o; = w;o; 

D: 0304 = o;wk = o'~w; = 0 = w5w6 0;o; = o;o; 

= o"o'( 
5 6  

= o"o" 
5 6  

o'jo; = 
5 6  

= 
5 6 .  

Each class has four different cases (the other four cases are related to them by T,) ; there- 

(18) 

fore we have 16 different models to consider : 

o1 = w; = 0'; = 0 (class B) 

o3 = o; = wl; = 0 (class D) 

o1 = o; = CO; = 0 (class A) 

o1 = o; = o; = 0 (class A) 

o1 = o; = 0'; = 0 (class A) 

CO, = o; = w'j = 0 (class B) 

o1 = o; = ol; = 0 (class B) 

o1 = o; = we = 0 (class B) 

o3 = ok = 0'; = 0 (class D) 

(10) o3 = wk = = 0 (class D) 

(11) 

(12) 

(13) 

(14) 

(15) 

o1 = o; = 0;' = 0 (class A) 

o3 = o k  = w;' = 0 (class C) 

o3 = o; = 0'; = 0 (class C) 

o3 = o; = CO; = 0 (class C )  

w3 = o; = w'; = 0 (class D) 

(16) o3 = ok = 0'; = 0 (class C )  

The free energies of these models are discussed in the following subsections, where 
similar models are discussed together. 
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4.1. Model (I) 
In this model we have II/ = 8 In a and there is no phase transition. 

4.2. Model (2 )  

This model is identical to the model (b)  of Wu and Lin (1975). The system is in a frozen 
state at all temperatures and 

li/ = @ max{ I e5 + e; + e: - e6 - e; - e ; / ,  le, + e; + e;' - e ,  - e; - eyI ) 

- i P ( e , + e ; + e ; ' + e , + e ; + e ; ) .  (35) 

4.3. Models (3)-(8) 

The free energies of these models can be rewritten in the formt 

1 "  
li/ = j da j" dB In@, + 52, eia + Q, e'p). (36) 

871 - z  - n  

This integral was evaluated by Wu and Lin (1975). These models are similar to the model 
(c) of Wu and Lin except that 0, is the sum of three (models (3)-(5)) or four (models (6)- 
(8)) Boltzmann factors instead of two. For completeness we write down the result 

(37) 3 In max{Q,, a,, a,} if 2 max{Q,, Q,, R,} 2 R, +R,+Q3 

# I  

-41 
8 In Q3 +i 471 d 4  In[@, +R, e-'#))lR,] otherwise (38) 

where 

IQ, +R, e-'"] = 0,. 

The critical condition is 
(39) 

2max{R,,R,,R,} = R,+R,+R, .  (40) 
In the model of Wu and Lin the system may exhibit up to two phase transitions. In our 
models the system has either zero or two phase transitions. To see this, we denote 

3 or 4 

= C exp(-Bci) Q, = exP(-Bcs) R3 = exp( - P c 6 ) .  (41) 
i =  1 

If c 5  is the lowest energy, then each of the following equations 

R, = R,+R,  52, = R,+R3 
has one solution at T = T:, T: (> T,!) respectively and we have 

$ = $ l n R ,  T L  T: 

= (38) TZ 2 T T,' 

= + h R ,  T,< T:. 
(43) 

t Although the integrand is complex, the integral is real. 



Staggered ice-rule tlertex model 1905 

The system is in a frozen state below T,‘ and in an ordered state above T: while the 
specific heat diverges with an exponent U = $ above T: and U’ = $ below T:. 

If c 1  is the lowest energy then R, = R, + R, has either 0 or 2 solutions (say T: > T,‘) 
and 

tjj = f l n R ,  

= (38) 

T,‘ 2 T o r  T 2 T: 

T: 2 T 2 T:. 

4.4. Models (9) and (IO) 
The free energies can be rewritten in the form 

1 P R  *R 

tjj = 4 J du J d/l ln(R, + a, eia +f  eiS + g e-@). 
87t - 7 1  - n  

(44) 

(45) 

These models are similar to the modified KDP model in a staggered field (Wu 1971) 
except that R, here is the sum of three Boltzmann factors instead of one. Wu’s result is 

tjj = f l n R ,  

= 3 In max{ f ,  g)  

= f ln[fR, +(in: -fg)1’2] 
41 

= $ In R, + d 4  ln[(R, + f  eiO + g e-’@)/R,] 
471 - Q 1  

where 

IQ, + f  e’+] + g = R, 

if R, 2 R,  + f + g  (46) 

i f f+g 2 R , + R ,  (47) 

if R, 2 R,+f+g (48) 

otherwise (49) 

The critical condition is 

R ,  +R,  + f + g  = 2 max(R,, R,, f + g } .  (51) 

In Wu’s model there is only one transition. In our models the system may exhibit up to 
two transitions. To  see this, we denote 

where t 3  + c4 = c 5  + c6 and c 1  = x in Wu’s model. There are three possibilities : 

(1) ‘2 < f i ( i  # 2) (1 or 2 transitions) 

f + g  < Q , + R ,  

R, = R,+f+g 
R, = R , + f + g  

at T = T,’ 

at T = T:( > T,’). 

( 5 3 )  
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Tf may become infinity. We have 

$ = + h R 2  (frozen state) T <  T: 

(a = a' = L) 2 = (49) 
= (48) (ordered state) T 2 Tf. 

T: 2 T 2 T,' 

c, -= ci(i # 3) 
f + g = R , + R ,  a t T = T :  

(1 or 2 transitions) 

a2 <Q,+f+g 

R, = R,+f+g at T = T:( > T:). 

T,2 may become infinity. We have 

$ = f In max(f, g} (frozen state) T <  T,' 

= (49) 
= (48) (ordered state) T 2 T:. 

(a = a' = L) 2 T: >, T 2 T: 

c 1  or c5 is the lowest energy 

0 2  < Q,+f+g 
f + g  < Q l + Q 2  

(0 or I transition) 

0, = R2+f+g at T =  T,,  
T,  may become infinity. We have * = (48) (ordered state) T <  T,  

= (49) (a = f) T a T , .  

(54) 

(ii) 

( 5 5 )  

(iii) 

(57) 

4.5. Models (11)-(14) 

The special case of model (1 1) where oi = 0; = oI), o1 = 0, o2 = 1, w3 = 0, = o5 = 
o6 = U was considered by Miyazima and Syozi (1968)t and by Wu (1973)$, and has 
only one transition temperature determined by U = f. The free energies of these models 
can all be expressed in the form 

1 "  
= da/ '  d ~ l n l R , - Q , e ' ( Q + 8 ) + R , e i Q + R , e ' ~ / .  (59) 87c - n  - n  

This integral has been evaluated by Hsue et a1 (1975). The result is 

CCI = + In max{Q,, a,, R,, a,} if R, +R2 +R,+R,  < 2 max{R,, Q,, R,, R,} 
(60) 

otherwise (61) 
Ri + 0: + 2R2R3 COS 4 

8n f1 -91 dmln( a: + Ri - X I , ~ ,  cos 4 = 9 In max{R,, a,} +- 

t They made an error in the calculation of the partition function, see Miyazima and Syozi (1973). 
$ The correct partition function was first obtained by Wu. His remark that the specific heat diverges logarith- 
mically both above and below T,  is not correct. 
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Our models are similar to the model of Hsue et al except that here R,  is the sum of three 
(model (1  1)) or two (models (12H14)) Boltzmann factors instead of one. In the model (1 1) 
the system may exhibit up to two transitions while in the models (12H14) the system 
has either one or three transitions. To see this, we write in model (11)  

Ri = exp( - P q )  i # 1  

R,  = exp( - P c , )  + exp( - P c 5 )  + exp( - 1~~) .  
There are two possibilities : 

(i) c 1  < ci(i # 1)  0 or 1 transition 

= R,+R,+Q, a t T = T ,  

R I  +a2 +R,+R,  > 2 max{R,, R,,  R,}. 

T,  may become infinity. We have 

$ = + I n n ,  (ordered state) T <  T,  
= (61) (a = +) T 2  T,. 

(ii) min{c,, c,, c,} = lowest energy (1  or 2 transitions) 

2max(R2,R3,R4} = R , + R , + R , + Q ,  at T =  T,' (67) 
02+n,+n, RI at T = T:( > T,'), 

T: may become infinity. We have * -'P 2 min(t2, € 3 ,  €4) (frozen state) T <  T,' 

= (61) (a = a' = 1 2)  T: 2 T 2 T,' (68) 

= + I n n l  (ordered state) T 2 T:. 

In the models (12H14) we have c6 = cc and there are two possibilities: 

(i) c1 < rj(i # 1) ( 1  transition) 

= R 2 + R , + n ,  at T = T ,  

RI + R, +a, + R, > 2 max(R2, R,,  a,} 
II/ = +ha, (ordered state) T <  T, 

= (61) (a = $) T 2 T,. 

(69) 

(ii) min{c2, c,, c,) = lowest energy (1  or 3 transitions) 

2max(R2+R,+R4} = R,+i&+R,+R, at T = T,'. (70) 
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R, +Q, +a4 = RI has 0 or 2 solutions (at T = T i ,  T: such that T i  > T: > 7‘:). We 
have 
* =  -‘P min(r2, c 3 ,  4 (frozen state) T <  T: 

= (61) 
= +InR,  (ordered state) T i  2 T 2 T:. 

(a = a’ = 1 2)  T 2 Tf or T: 2 T 2 T,‘ (71) 

4.6. Model (15) 

This model satisfies the condition bcd’ = b‘c’d and we can use the results of 0 3. The 
system has exactly one transition temperature T,  determined by the critical condition 
(14). We denote 

a = a, +a, 

b = exp( - De3) c’ = exp( - P c 4 )  d = exp( - P e s )  d’ = exp( - P t 6 )  (72) 

where c1 + c2 = c, + c 6 .  It follows from equations (1 1 )  and (13) that 

* =  -1 2Pmin{r,, € 2 ,  € 3 ,  €4 ,  € 5 ,  € 6 )  

a,  = W,O;O~ = exp(-PE1) a2 = W ~ W ~ O ;  = exp( - B e 2 )  

(frozen state) T <  T,  

where 
4dd‘ ~ 0 ~ ~ 4 0  + 2[bd + a(d + d‘)] COS 40 + U’ + (d - d’)’ - b2 - C” = 0. (74) 

4.7. Model (16) 

This is the only model with bcd‘ # b’c‘d. The analytic property of this model is discussed 
in appendix 3. The free energy 

d 4  In/a+be’B+ce’@-d’e-’(8+d) I (75) 
1 “  

$(U, b, C ,  d’) = ~ 

8 x 2  l-“ del:“ 

is symmetric in b, c, d‘. We have 

$ = f In max{b, c, d’} if 2 max(b, c, d’} > a+ b+ c+d‘ (76) 

= $ [U ,  (b~d’)’’~,  (b~d’) ’ ’~ ,  ( b ~ d ’ ) ” ~ ]  if a 2 b+c+d’  (77) 

= ($-%) l n m a x ( b , d ’ ~ + ~ ~ o # ’ n d ~ l n f [ y 1 ~ 2 + ( y + 4 b d . ) l . ’ l  otherwise (78) 

where y is the positive root of 

f ( y ,  COS 4) = y’ - (a2 + c2 + 2ac COS 4 - 4bd‘)- ?bd‘( 1 + COS 4)(2c COS 4 + U  - c)’ 

= o  
and f((b - d)’, cos 4,,) = 0. The critical condition is 

A = a+b+c+d’-2max{a,b,c,d’} = 0 

and we have 

*singular % ~ 3 1 2  A -+ 0’. 
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The system may exhibit up to two phase transitions. To see this, we denote 

(82) 
a = exp(-flcl)+exp(-flcZ)+exp(-flc3) 

b = exp( -/3c4) c = exp( - Be,) d' = eXp( - f l C g )  

where E, + c 2  + c 3  = c4 + c5 + c 6 .  There are two possibilities : 

(0 min{c4, c 5 ,  c 6 j  = lowest energy 

2max{b,c,d'} = a + b + c + d '  

U = b+c+d '  

(1 or 2 transitions) 

at T = T: 

at T = T:(> T:). 

T: may become infinity. We have 
II,= -1 2 f l  min{c4, € 5  9 € 6 )  (frozen state) 

= (78) (a = x' = 1 2) TZ 3 T 3 Tf (83) 

= (77) (ordered state) T 3 TZ. 

T d  T: 

(ii) min(cl , c 2 ,  c3) = lowest energy 

a = b+c+d '  

(0 or 1 transition) 

at T =  T,.  
T ,  may become infinity. We have 

$ = (77) (ordered state) T d  T,  
= (78) (a = 4) T 3  T,. (84) 

5. Exact isotherm of an antiferroelectric model 

Following Baxter (1970), we use the free-fermion condition ( 5 )  to define a temperature 
at which the Pfaffian solution is valid. Since the validity of condition ( 5 )  is independent 
of the direct and staggered fields, we have an exact isotherm for a general staggered 
model. 

We denote the staggered field by s, the direct fields in the horizontal and vertical 
directions by h and U such that 

e ,  = e; = e: = s e6 = e; = e'; = - s  

e ,  = c+$h+$u e2 = ~ - 3 h - l ~  2 e3 = c'+)h-$v e4 = c'-$h+$v 

e; = c+$h-$o e; = c - ;h+&v  e; = c ' -$-Lo  2 e; = c'+$h++v 

e'; = €'(e)+ h e; = €'(E) - h e; = € ( € ' ) - U  e l  = € ( € ' ) + U .  ( 8 5 )  

The temperature is determined by equation ( 5 )  
,-2s.+e-2P" - - 1 (86) 

Note that bcd' = b'c'd and the results of 8 3 can be used. 

5.1. The case with e ,  + e 2  = e; + e ;  = e: +e ;  
The free energy is 

1 "  
II, = 7 [ de [" d 4  lnlF(B,4)l 

8n: -" - n  
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where 

F = 2 cosh S + 2  e-3flr'+2 e-fl('"+2')[cosh(H- V+iO)+cosh(H+ V+iq5) 

- cosh(2H + io +@)I 

s = 3ps H = 2/?h V = 2pv. 
(88) 

We define 
g(S) = efl(r'+2f) cosh S+e2f l (r - ' ' ) ,  

It follows from equations (11) and (12) that 
2n  1 2n 

II/ = Jo dB 1 dq5 ln[g(S)-cos 8- cos q5 -cos (e+ 4)] + 4 In 2 - p(t ++e') 
0 

if g(S) 2 cosh(H + V )  + cosh (H - V )  + cosh(2H) (89) 

(90) 

where is independent of H and V, and both direct polarizations PH and Pv are zero. * = /HI --P(€+i€') if cosh(2H) 2 cosh(H - V )  + cosh(H + V )  + g(S) 

where 

PH= f l  Pv = Ps = 0 

(i/ = 3IHI+Ivl)-P(E+i4 

where 

if cosh(lHl+ I VI) 2 cosh(lH1- I VI) + cosh(2H) + g(S) 

(91) 

Ps = 0 1 
lpHl = lpVl = 3 * = (12) if g(S) ,  cosh(H + V ) ,  cosh(H - V ) ,  cosh(2H) form a polygon (92) 

wheret 
1 1 

pH = 1 --(+o + e,) pV = 1 --(q50 - eo). 
II II 

5.2. The case with e ,  + e 2  = e; + e ;  = e'; + e ;  

In this case we have 

F = 2 cosh S + 2  [ 1 + cosh(H - V+ i8)+ cosh(H + V +  iq5)] 

- 2 e-  3 p f  cosh(2H + io + iq5). 

f ( S )  = 1 + eP('I' ") cosh S.  

(93) 

(94) 

We define 

It follows from equations (1 1) and (12) that 

277 1 2 R  
$ = J0 de 1 dq5 In[f(S)-cos 8-cos +-eZB("-') cos(O++)]+~ In 2 - p ( ~ ' +  +E) 

0 

if f(S) 2 cosh(H - V )  + cosh(H + V )  + e20(f'-f) cosh(2H) (95) 

t See equation (65) of Wu and Lin (1975). 
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where PH = Pv = 0. 

cosh(2H) 2 COsh(H - V )  + COSh(H + V )  +f (S)  * = IHI-ipC if e28(e‘ - 4 

where PH = f 1, Pv = Ps = 0. 

* = &IHI+iVl)--P(C’+3C) 

if cosh(lHI+ I VI) 2 cosh(lH1- I VI) + e2@cf‘-f) cosh(2H)+f(S) 

where [PHI = lPvl = 3, Ps = 0. * = (12) otherwise 

where 

1911 

(96) 

(97) 

(98) 

1 1 
PH = i--(+o+eo) pV = 1 --(+o-eo). 

71 II 

6. Conclusion 

We have considered all soluble models, where the vertex weights satisfy the free-fermion 
condition at all temperatures. We found that the system may exhibit up to three phase 
transitions. If there is only one transition, then the system is in an ordered or frozen 
state below T, ,  and the specific heat diverges with a = 3 above T,. If there are two 
transitions (T: > T:), then the system is in an ordered state above T:, and in an ordered 
(in this case the free energy is described by the same function for T > T: and T < T,’) 
or frozen state below TE, while the specific heat diverges with a = 4 above T,‘ and 
a‘ = 3 below T:. If there are three transitions (T:  > T: > TA), then the system is 
frozen below T i ,  and in an ordered state for T i  2 T 2 T:, while the specific heat 
diverges with a = 3 above TZ, T i  and a’ = 4 below T:. In the last case, the free energy 
is described by the same function for both T > Tf and T:  > T > Tf.  

We also obtained the exact isotherm of a general antiferroelectric model at a 
particular temperature in the presence of both direct and staggered fields. As the fields 
varied, the system underwent transitions among states of zero direct polarizations 
(PH = Pv = 0), partial polarizations and complete direct polarizations (Ps = 0, 
lpHl +IpVl = l). 
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Appendix 1. Haffian solution 

Expand each site of L into a ‘city’ of four terminals to form a dimer lattice LA whose 
unit cell is shown in figure 3. Following exactly the same procedure of Wu and Lin 
(1975), we obtain 
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Figure 3. A unit cell of the dimer lattice LA 

where 

A =  

0 1 

0 0  

1 0 

0 0  

U; -U; 

- U ;  U: 

ui = Oi/O2 U ;  = w;/o; ul' = Ol'/"' 2 

and A* is the hermitian conjugate matrix of A. Equation (A.l) reduces to equation (6 )  
in the text after some algebra. 

Appendix 2. General properties of J, 

In this appendix we discuss the analytic properties of the free energy 

$(a, b, b', c, c', d, d ' )  

where 

F = a + b + b' e- ie  + eid + c #  e - i6 - d - d' , - ice+@) 

and the parameters are defined by equation (8). 
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Lemma 1. 
a 2 2(bb‘)’’’ + ~ ( C C ’ ) ’ ’ ~  + 2(dd’)’’2. 

Proof. The free-fermion condition ( 5 )  implies 

wlw2 = sin2aw,w6 

w;w; = sin2pw;wk 

U 3 0 4  = cos2aw5w6 

w;w: = cos2pw;o; 

w;w; = cos2yo;o;: o‘jwe = sin2yw;w;. 

We rewrite both sides of (A.4) in the form 
a = w3wkw; + w4w;o;) +w,w;w; + w60;o ;  

2 2(w304w;wiW’;0’;)”2 + 2(05w6w;wbwgwg)“2 

= 2(w5060;wkw;w;;)1’2(1 +cos a cos p cos y) 

2(bb’)’/2 + ~ ( C C ’ ) ’ ’ ~  + 2(dd’)’12 

= 2 ( 0 5 w ~ 0 ; w ~ o ~ o ~ ) ” 2 ( ~ o s  a sin p sin y + sin ct cos /? sin y 

+sin a sin /3 cos y). 

The inequality then follows from 
1 + C Q S ( U + p + y )  

= 1 +cos a cos p cos y -cos a sin p sin y -sin a sin p cos y 

-sin a cos sin y 2 0. 

Lemma 2. 
a 2 3(bcd’+ b‘c’d)’l3. 

Proof. 

a = (w4w;w1; + ~~401;) + 05w;06  + u6w;w; 

2 3[(W40;W’; 4- w30“;)050;o~oswbo‘;3’’3 

2 3[(W40;0;) 0 3 w k o ; ) o 1 0 2 0 ; W ; 0 ’ j 0 ~ ] 1 ’ 3  

= 3(bcd’ + b‘c‘d)’l3. 
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(‘4.4) 

From now on we consider a, b, b‘, c, c‘, d ,  d’ as independent and positive parameters 
which satisfy inequalities (A.4) and (A.5). 

Lemma 3. 

$(a, b, b’, c, c’, d ,  d‘) 

= $(a, b’, b, c’, c, d ,  d )  = $(a, c, c‘, b, b’, d ,  d ‘ )  

= $(a, d ,  d’, c‘, c, b, b‘) = $(a, c‘, c, d ,  d‘, b, b‘). (A. 6 )  
Proof. These equalities follow from the fact that the integral (A.3) remains the same if 
F ( 8 , $ )  is replaced by each of 

w e ,  -9) F(9, 8) W + + + n ,  -9) F(--6-+-n, 4). 
To calculate $ we need the following mathematical lemmas (Wu and Lin 1975). 
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Lemma 4. For complex A ,  B 

271 In A 

2n In B 
if IAl 2 IBI 

if IAl < IBI. 
J n  de  ln(A eie+ B)  = 
- n  

(A.7) 

Lemma 5.  For complex A, B, C 

2nln C 

d e  ln(A e’’+ B + C e-ie) = 271 In A 
if IZ l l , lZ2 l  2 1 

if lzll, lz21 < 1 (A.8) I 2n In( - A z , )  if lzll 2 1 2 lz21 

where zl, z2 are the two roots of the quadratic equation 

Az2+Bz+C = 0. 

Theorem 1.  If a, b+ b’, c + c’ and d + d‘ cannot form a polygon, then F(8,$)  # 0 for all 
6 and 4 which implies II/ has no singularity. In this case we have 

IC/ = 3 In max{b, b’} 

= 3 In max{c, c‘} 

= f In max{d, d ’ }  

if b+b‘ > a + c + c ‘ + d + d ‘  

i fc+c‘  > a + b + b ‘ + d + d ’  

i fd+d‘  > a + b + b ’ + c + c ’  (4.9) 

i f a  > b + b ’ + c + c ’ + d + d ’  

where /xll 2 lx21 and x , , ~  satisfy x 2 - B x + A C  = 0 with 

A = b-dei+ B = a+ce’b++’e-’+ C = b’-d’e-’+. (A.lO) 

Proof. To prove F(8,q5) # 0, it is sufficient to consider the case 

b + b ’  > a + c + c ‘ + d + d ‘  (A. 11) 

since the other cases are either trivial or equivalent to this one by (A.6). Lemma 1 implies 

U = c2 + 2(bb’)”2 + ~ ( C C ’ ) ’ ’ ~  + 2(dd’)’’’. 

We rewrite (A. 11) in the form 

(Jb-Jb’)2 > t2 + ( J c + J c ’ ) ~ + ( J ~ + J ~ ’ ) ’ .  (A.12) 

If F(8,  q5) = 0, then 
b ei(B+n) + b’ , - i @ + n )  = a + ei+ + c‘ e - i +  + d ei(e+++ n) +,d’ e - i ( e + + +  4 

or 

{ Jb exp[+i(8+ n)] -Jb’  exp[ -)i(8+ z ) ] ) ~  

= c2+[Jcexp(+i+)+Jc’exp(-+i4)l2 

+ { Jd exp[fi(8 + 4 + n)] + Jd‘ exp[ - fi(8 + 4 + 71)]} ’. (A. 13) 
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Equation (A.13) is impossible to  satisfy for any 8 and 4 since 

lleft hand side of (A. 13)12 

2 ( J b  - Jb')2 > c 2  + ( J c  + J c ' ) ~  + ( J d  + J d ' ) 2  

2 lright hand side of (A.13)I2. 

To evaluate $, we use lemma 5 to carry out the 8 integration. Let z1(4) and z2(4) 
bethetworootsofAz'+Bz+C = 0. SinceF(8,4) = Aeie+B+Ce-"  # Oforal l8 ,4 ,  
it is clear I Z ~ , ~ ( + ) ~  # 1 for all 4. Lemma 3 implies that all we need to do is to check the 
following two cases 

(i) b > b', b+b' > a+c+c'+d+d' 
(ii) a > b+b'+c+c'+d+d'. 

In the first case, we find I Z ~ , ~ ( ~ ) I  < 1 for all 4 and 

$ = 'J d4ln(b-dei@) = i l n b .  
4n -" 

In the second case, we find 1z1(4)1 > 1 > lz2(4)l for all 4 and 

Theorem 2. If bcd' = b'c'd and a > b + b' + c + c' + d + d',  then 

1 
$ = --i 1" de I" d 4  ln[a + 2(bb')"' cos 8+ ~ ( C C ' ) ' ~ '  cos 4 - 2(dd')'I2 cos(8 + 4)]. 

87c - n  - n  

(A. 14) 

Proof. From theorem 1 we have 

where x1 satisfies x2  - Bx + AC = 0. In the complex ei4 plane the integrand has square 
root branch points at the four roots of B2 -4AC = 0. Defining c/c' = e2h, (bb')"' = bo, 
(cc')li2 = eo, (dd')'!' = d o ,  y = 2 cosh(h+i$), we have 

j'(ei@) = B2 - 4AC = ciy' + 2(ac0 + 2b,do)y + a2 - 4(bg + d i )  = 0. (A. 15) 

It can be established from (A.15) that all four roots off(e'@) = 0 lie on the negative real 
axis. Furthermore, the inequality a > b + b'+ c+ c'+ d +d' ensures that two of these 
roots lie outside the unit circle and two inside the unit circle such that on the real axis 
these two pairs are separated by the interval ( -  e-h,  - 1). We may then move the contour 
of the 4 integration from - n -+ IC to - 7c+ ih + n + ih and obtain (A.14). 

Theorem 3. If a, b + b', c + c', d +d' form a polygon, then F ( 8 , 4 )  = 0 has at least one 
(but no more than three) solution such that 0 < e,$ < x. In the following special cases 
there exists exactly one solution : 

(i) bcd' = b'c'd 
(ii) b = c = d' = 0 or b' = c' = d = 0. 
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When the polygon degenerates into a straight line, namely 

a + b + b’+ c + c’+d + d’ = 2 maxis, b + b’, c + c’, d+ d’) 

F(B, 4) = 0 if and only if 

6 = 4 = 0  i fa  = b+b’+c+c’+d+d’  

e = 0, 4 = n  i fb+b’  = a+c+c’+d+d’  

e = n, 4 = 0  if c+c’ = a + b + b ’ + d + d ’  

8 = 4 = 7 l  ifd+d’ = a+b+b‘+c+c‘  

After some algebra we find 

 COS^) = A c o s ~ $ + B c o s ~ ~ + C C O S ~ + D  = 0 

where 

A = 8(bc - b’c’)(cd’ - c’d) 

B = 44(b - b’)(cd‘ - c’d) - (d- d‘)(bc - b’c’)] 

+ 4(bc-b‘c’)(bc‘-b’c)+4(cd-c’d’)(c‘d-cd’)-4(bd-b’d’)2 

2(B+D) = f ( l )+f ( -1)  

2(A + C )  = f(1)-f( - 1) 

f(1) = (b - b’ - d+ d‘)2[(a + c + c ’ ) ~  - (b + b’ - d-  d’)’] 

f( - 1) = (b - b’+d- &)’[(U - c - c’)’ -(b + b’+ d+ 

(A. 16) 

(A. 17) 

(A.18) 

Equations (A.18) has at most 3 solutions. 
If U, b + b‘, c + c’, d+ d’ form a polygon we have 

f(1) > 0 2 f(- 1) 

which implies that f(cos 4) = 0 has at least one solution (real 4). In the first special case, 
we introduce two parameters U and U such that 

c = co e” c‘ = toe-" b = hoe-" b‘ = bo e” 

d = do e”-” 8 do ev-”. (A. 19) 

We rewrite A and B :  

A = 16b0~&[~0sh U - cosh(u - 2 ~ ) ]  (A.20) 
i B  = - ~bocodo[c0~h(2~)+ C O S ~ ( ~ U  - 2 ~ )  - 21 - ~ { c ~ [ c o s ~ ( ~ u )  - C O S ~ ( ~ U ) ]  

- b;d;[cosh(2~ - 4 ~ )  - 13 - c ;~ ; [ cos~(~u) -  C O S ~ ( ~ U  - 2~)] .  (A.21) 
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Without loss of generality we assume U > 0 and co < bo, d o .  If f ( x )  has three solutions 
in the range 1x1 < 1, then we must have A > 0 which implies U > U > 0. Besides, we 
have (d2/dx2)f(x) = 0 at x = xo where (xoI -= 1. However, it can be established from 
a > 2(b0+c0+d0) that IB1 > 3A which implies lxol > 1. In the second case where 
b' = c' = d = 0, we have 

A = 8bc2d B = 8abcd'. (A.22) 

Without loss of generality we assume c < b, d .  It can be shown from a > 3(bcd')'I3 that 
B > 3 A  which implies (xoI > 1. 

Theorem 4. If a, b + b', c + c', d + d' form a polygon and bcd' = b'c'd, then 

if b'+d' < b+d 
$ = flnmax{b,d}+,L 1 ,#Jo lnlzl ld4 

1 40 
= +In max{b', d ' )  -g Jo In lz21 d 4  if b'+d' > b+d (A.23) 

where F(Bo,  $J~)  = 0,O < 4o < 71, z1 and z2  (lzll 2 1z21) are the roots of 

(b-dei@)z2+(a+cei@+c'e-i ,#J)z+b'-d 'e-i ,#J = 0. (A.24) 

Proof. We write 

F ( B , b )  = A(4)eie+B(4)+C(4)e-" 

and let z ~ , ~ ( $ )  be the roots of Az2 + Bz+C = 0. It is easy to show that 

bll > 1 > lz2l if40 > 4 
I Z l L  lzzl > 1 

kll5 lz2l < 1 

if 4o < 4 and b'+d' > b+d 

i f  4o < 4 and b'+d < b+d. 

It follows from lemma 5 that 

(A.25) 

if b'+d' < b+d 
1 @ O  

271 0 
ICI = -s 

In max{b', d'}  d 4  if b'+d' > b+d 

which reduces to (A.23). 
Equation (A.23) implies that the singular part of I) behaves as A3I2 as A -+ 0' where 

(A.26) A = a + b + b' + c+  c'+ d + d' - 2 max{a, b + b', c + c', d + d '} .  

Appendix 3. Analytic property of model (16) 

The free energy is 

(A.27) 
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where 
F = a+beie+cei9-d‘e-i(e+9). 

Note that $ is symmetric in b, c, d‘. From (A.9) we have 

$ = 3 In max{b, c, d’} if2max{b,c,d’} 2 a+b+c+d’.  (A.28) 

Theorem 5. If a > b + c + d‘, then 

$ = $ [U ,  ( b ~ d ’ ) ” ~ ,  ( b ~ d ’ ) ” ~ ,  ( b ~ d ’ ) ” ~ ] .  (A.29) 

Proof. Let z,(I$), z2(4) (lzll 2 1 . ~ ~ 1 )  be the roots of 

bz2 + (a + c ei”z - d’ e - i4  = 0. (A.30) 

It follows from a > b + c + d ’  that Jzll > 1 > Iz2/. Lemma 5 of appendix 2 implies 

1 “  i = - j  d4  In( - bz,) = $[a,  (bd’)1’2, c, (b~i’)’’~].  (A.3 1) 
47c - n  

The last step follows from the fact that x = - bz satisfies 

x2-((a+ce’@)x-bd’e-’@’ = 0. (A.32) 

The symmetry property of $ implies * = $[a,  c, (bd’)”2, (bd’)”2] = $[a,  (C2bd’)”4, (bd’)”2, (CZbd’)’!4] 

- - . . . = $ [ U ,  ( b ~ d ‘ ) ” ~ ,  ( b ~ d ’ ) ’ ’ ~ ,  ( b ~ d ’ ) ” ~ ] .  

Theorem 6. If a, b, c, d’ form a polygon, 

$ =  [i --o ;n) 1 n max(b, d‘} d 4  In $[y1’2 +(y+4bd‘)1’2] (A.33) 

where y is the positive root of 

f ( y  COS 4) = y 2  - (U’ + c2 + ~ U C  COS 4 - 4bd’) - 2bd‘( 1 + COS 4 ) ( 2 ~  COS 4 + U - c)’ = 0. 

(A.34) 

Proof. Let z = p ei’ (a real) be the root of equation (A.30). After some algebra, we find 
f(y,  cos 4) = 0 where y = (bp - d’p- 1)2. If a, b, c, d‘ form a polygon, F(Bo ,  40) = 0 has 
exactly one solution such that 0 < eo(&) < 7c (see appendix 2) which implies 

f((b-d)*, 40) = 0. 

P1 > 1 > P 2  

It can be shown that 

if141 < 40 
P l 9 P 2  > 1 

PlrP2 < 1 

if n > 141 > and d’ > b 

if n B 141 > 4o and d‘ < b. 

It follows from lemma 5 of appendix 2 that 

I) = -s’ 1 d ~ l n m a x { b , d ’ } + ~ ~ o ~ o d ~ l n ( b p l ) .  
2n 90 

(A.35) 



Staggered ice-rule vertex model 1919 

Equation (A.35) reduces to (A.33) since 

1 
p 1,2 = [(y + 4bd’)’/z i- y1’2]. 
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